
  

 

DEVELOPMENT ENVIRONMENT OF PC_BSD

KievBSD 2012

by Yuri Momotyuk (yurkis@gmail.com)



  

Development environment of PC-BSD

Background:
C++, Qt, FreeBSD



  

Development environment of PC-BSD

Plan:
●Subversion layout
●Steps for making PC-BSD utility
●Project file
●libpcbsd
●Translations
●Making single instance app
●Adding control panel item



  

Subversion layout

PC-BSD svn url: svn://svn.pcbsd.org/pcbsd/
Current branch (trunk): current/

Stable branches: branches/



  

Subversion layout

build-files/
PC-BSD build related files and settings (out of scope of this presentation)
You may take a look into:
●build-files/conf/port-make.conf – make.conf for PC-BSD build
●build-files/ports-overlay/ – ports which absent into FreeBSD ports tree but uses for PC-
BSD build
●build-files/src-overlay/ - Sources which are absent in FreeBSD source tree 
●build-files/src-patches/ - Patches for FreeBSD source tree
●overlays/
Overlays will by copied against installed FreeBSD world. This is good place to override 

FreeBSD config files.  For example PC-BSD rc script/rc.conf (with parallel daemons 
startup) may be found at overlays/desktop-overlay/etc/rc (rc.conf). 64 bit overlay will be 
copied after 32 bit overlay copy. So it contains only 64 bit specific files.
●src-kde4/
KDE related sources (thumbnailer for PBI files)

●src-qt4/
Source codes of all graphical PC-BSD utils. Every utility places on own directory. Project 

file should be named just as directory (src-qt4/about-gui/about-gui.pro for example) PC-
BSD build script use src-qt4/src-qt4.pro project for build all utils. So if some util absent in 
src-qt4.pro it will not be included into PC-BSD distribution.

●src-sh/
PC-BSD shell scripts. All script should have Makefile with install traget. During build 

process PC-BSD build script use src-sh/Makefile to install all scripts.



  

Steps for making PC-BSD utility

●Make Utility
All of graphical PC-BSD utils ia a Qt (or at least qmake based) applications. So in 

common case below I expect that your application is based on Qt.

●Change project file for correct PC-BSD distribution 
build
PC-BSD build system require some predefined build and install behavior so you 

need to make some changes in project file.

●Add translation
All of graphical PC-BSD utils supports multilanguage. So you should add ability of 

UI and messages translation. 

●Make application single instance (if need)
Most of configration utils should be single instance applications (if you try to run 

another instance, it just display first instance even it minimized)

●Add item to control panel (if need)
Most of system configuration utils are present in PC-BSD control panel



  

Project file

●Build
PC-BSD build system expect that application builds into /usr/local/bin directory (that 

binary will be there without making install rule). So you should change DESTDIR variable 
in your project in that way:
DESTDIR=/usr/local/bin

●Install
● Desktop file and icon
Your application may (should?) have icon and .desktop file. So you may add:
icons.path=/usr/local/share/pcbsd/icons/
icons.files=YOUR_APP.png
desktop.path=/usr/local/share/applications/
desktop.files=YOUR_APP.desktop
INSTALLS += icons desktop

●Application shared files
Application should keep own shared files somewere in /usr/local/share/pcbsd/ (dont 

forget to create and clean destination directory if need). 
For example for control panel items:
cleanitems.path=/usr/local/share/pcbsd/pc-controlpanel/items
cleanitems.extra=rm -rf /usr/local/share/pcbsd/pc-controlpanel/items
mkdiritems.path=/usr/local/share/pcbsd/pc-controlpanel/items
mkdiritems.extra=mkdir -p /usr/local/share/pcbsd/pc-controlpanel/items
cpitems.path=/usr/local/share/pcbsd/pc-controlpanel/items
cpitems.extra=tar cvf - --exclude '.svn/' -C items . 2>/dev/null | tar xvf - -C 

/usr/local/share/pcbsd/pc-controlpanel/items 2>/dev/null
INSTALLS+= cleanitems mkdiritems cpitems



  

libpcbsd

In common case most of PC-BSD utils just do several things: change value in 
configuration file; run some script or application and anlyze output. libpcbsd  
provides useful functions for that (and more) actions and provides interface to PC-
BSD specific staff.

●Add to project
You may add libpcbsd to your project by adding that lines to project file:
LIBS    += -L../libpcbsd -L/usr/local/lib -lpcbsd
Include file:
#include <pcbsd-utils.h>



  

libpcbsd

●Some useful things:
●Run shell command
QStringList output = Utils::runShellCommand( QString(“ls -l”) );
(run 'ls -l' command and store output into output string list)

●Run in terminal
Utils::runInTerminal(QString(“portsnap fetch update”), QString(“Ports update”));
(Open desktop environment related terminal application (konsole for kde, gnome termina for gnome, 

etc) and run 'portsnap fetch update'. Terminal window title should be “Ports update”.)

●Open directory in file manager
Utils::openInFileManager(QString(“/home/yurkis/Downloads/”));
(Open directory in desktop environment related file manager (dolphin for KDE, nautilus for Gnome, 

etc.)

●Get sysctl value
QString CPU = Utils::sysctl("hw.model");
QString mem = Utils::sysctlAsInt("hw.realmem");
(Get CPU info and amount of memory from hw.model and hw.realmem sysctls)

●Change and get config file value
Utils::setConfFileValue(QString(“/etc/rc.conf”), QString(“sshd_enable”), QString(“\”YES\””);
(set sshd_enable=”YES” in rc.conf file – enable ssh daemon)



  

libpcbsd

●Also:
●Validation of v4 and v6 IP dress
●Format amount of bytes to human readable format (“2.00 Gb” for example)
●Get and set pcbsd.conf value
●Get and set system proxy settings
●Restart networking
●Widgets for control meta packages, WiFi security selection, etc
●... and more



  

Translations

●Changes in sources for translations support
Changes to enable translations for your app against standard generated main.cpp file are shown below (in 

blue):
 #include <qtranslator.h>

  #include <qlocale.h>
  #include <QFile>
  #include "mainwindow.h"
  #include "../config.h"
  
  int main(int argc, char *argv[])
  {
      QtApplication a(argc, argv);
  
      QTranslator translator;
      QLocale mylocale;
      QString langCode = mylocale.name();
      if ( ! QFile::exists( PREFIX + "/share/pcbsd/i18n/YOUR_APP_" + langCode + ".qm" ) )
            langCode.truncate(langCode.indexOf("_"));
      translator.load( QString("YOUR_APP_") + langCode, PREFIX + "/share/pcbsd/i18n/" );
      a.installTranslator( &translator );
  
      MainWindow w;
      w.show();
      return a.exec();
  }
At first we create QTranslator and QLocale objects and then load translations from 
/usr/local/share/pcbsd/i18n/. Translation files for you app should be 
/usr/local/share/pcbsd/i18n/YOURAPP_LANGCODE.qm
PREFIX constant defined in ../config.h file and currently is “/usr/local/”

Also dont forget to use _tr() macro for strings in source code:
ui->somelabel->setText(_tr(“Some translated text here”));



  

Translations

●Changes in project file for translations support
●Files with translations should be installed in /usr/local/share/pcbsd/i18n. File 
name should be YOURAPP_LANGCODE.qm (AboutGui_uk.qm for example). 

●In subversion translations places in i18n/ subdirectory of your application 
directory.

Lets add rules for translations instalation to project file:

TRANSLATIONS =  i18n/YOUR_APP_af.ts \
                                i18n/YOUR_APP_ar.ts \
 ................. and many simular strings here ................................

dotrans.path=/usr/local/share/pcbsd/i18n/
dotrans.extra=cd i18n && lrelease-qt4 -nounfinished *.ts && cp *.qm 

/usr/local/share/pcbsd/i18n/

INSTALLS+=dotrans



  

Making single instance app

●Single instance library
To be single instance PC-BSD utils uses SingleApplication library from Qt solutions (devel/qt4-qtsolutions-

singleapplication port included in PC-BSD base). To use this library add to your project file:
LIBS += -L/usr/local/lib -lQtSolutions_SingleApplication-head



  

Making single instance app

Changes in source code
Changes against standard generated main.cpp file to make your app single instance are shown below (in 

blue):
#include <qtsingleapplication.h>
 #include "mainwindow.h"
////////////////////////////////////////////////////////////////////////////
  int main(int argc, char *argv[])
  {
      QtSingleApplication a(argc, argv);
      if ( a.isRunning() )
            return !(a.sendMessage("show"));
    
      MainWindow w;
      w.show();
      
      // Issue workaround - see explanation in text below
      QObject::connect(&a, SIGNAL(messageReceived(const QString&)), &w, SLOT(slotSingleInstance()) );
      return a.exec();
  }
Your application should be child of QtSingleApplication class. That class has isRunning() method to check is 

application already running. 
QtSingleApplication class already has mechanisms to bring to front main window when another instance was run. 

But that code is not work properly with all window managers. So we should manually send message to  previous 
instance, and when that message will be received bring window to top (See sending message and signal 
connection example in main.cpp above). 
On main window header:
public slots:

    void slotSingleInstance();

On main window sources:
void MainWindow::slotSingleInstance()
{
    this->hide();
    this->showNormal();
    this->activateWindow();
    this->raise();
}



  

Adding control panel item

●Add item
● Control panel item in common case is an ordinary .desktop file
● Control panel items on installed system are placed at /usr/local/share/pcbsd/pc-controlpanel/. Each items 
category is in separate subdirectory.
● On subversion repo control panel items are placed at src-qt4/pc-controlpanel/items/

So you should only add your application .desktop file to src-qt4/pc-controlpanel/items/ for some category 
and see your application in control panel in next PC-BSD build.
You also may change project install rule to copy .desktop file to /usr/local/share/pcbsd/pc-controlpanel/  

but for me (as for control panel maitainer) really more simple to change something if items  will be in 
single place.

●Aditional features
Control panel items has several enhancement between ordinary .desktop files. You may use this if you 

need:
●Visibility condition
You may use some shell command to check if your item should be shown. You may use PC-TryCommand 

field (name is case sensative!). This field may contain shell command. If that command ends with zero 
return code – your item will be shown.
For example nvidia setting item will be shown only if nvidia kernel module was loaded:
PC-TryCommand= kldstat|grep nvidia.ko

●Desktop envirunment dependent visibility
If you wish to display item only on particular desktop environment you may use PC-RequiredDE field with 

desktop environment name. 
For example:
PC-RequiredDE=KDE

●Other features
●Also you may display item only if some pbi installed and some other



  

Web resources

Common
●PC-BSD main site: http://pcbsd.org/
●Blog: http://blog.pcbsd.org
●Wiki (incl. some development things): http://wiki.pcbsd.org
●Forums: http://forums.pcbsd.org

Development related
●Bug tracker (trac): http://trac.pcbsd.org/
●Translation (pootle): http://pootle.pcbsd.org
●PBI build server reporting:  http://pbibuild.pcbsd.org
●Mail lists: http://lists.pcbsd.org
 

http://pcbsd.org/
http://blog.pcbsd.org/
http://wiki.pcbsd.org/
http://forums.pcbsd.org/
http://trac.pcbsd.org/
http://pootle.pcbsd.org/
http://pbibuild.pcbsd.org/
http://lists.pcbsd.org/


  

Thanks!
... and long live PC-BSD! :)


	Слайд 1
	Слайд 2
	Слайд 3
	Слайд 4
	Слайд 5
	Слайд 6
	Слайд 7
	Слайд 8
	Слайд 9
	Слайд 10
	Слайд 11
	Слайд 12
	Слайд 13
	Слайд 14
	Слайд 15
	Слайд 16
	Слайд 17

